Cell motility: a viscous fingering analysis of active gels

نویسندگان

  • M. Ben Amar
  • O. V. Manyuhina
  • G. Napoli
چکیده

The symmetry breaking of the actin network from radial to longitudinal symmetry has been identified as the major mechanism for keratocytes (fish cells) motility on solid substrate. For strong friction coefficient, the two dimensional actin flow which includes the polymerisation at the edge and depolymerisation in the bulk can be modelled as a Darcy flow, the cell shape and dynamics being then modelled by standard complex analysis methods. We use the theory of active gels to describe the orientational order of the filaments which varies from the border to the bulk. We show analytically that the reorganisation of the cortex is enough to explain the motility of the cell and find the velocity as a function of the orientation order parameter in the bulk. PACS. 87.17.Jj Cell locomotion; chemotaxis – 87.17.Rt Cell adhesion and cell mechanics – 47.20.Gv Viscous and viscoelastic instabilities – 47.20.Ky Nonlinearity, bifurcation, and symmetry breaking – 47.20.Ma Interfacial instabilities

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid mixing from viscous fingering.

Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or viscous fingering, provides a powerful mechanism to increase fluid-fluid interfacial area and enhance mixing. Here we describe the dissipative structure of miscible viscous finger...

متن کامل

Viscous fingering in liquid crystals: anisotropy and morphological transitions

We show that a minimal model for viscous fingering with a nematic liquid crystal in which anisotropy is considered to enter through two different viscosities in two perpendicular directions can be mapped to a twofold anisotropy in the surface tension. We numerically integrate the dynamics of the resulting problem with the phase-field approach to find and characterize a transition between tip sp...

متن کامل

Viscous fingering patterns in ferrofluids

Viscous fingering occurs in the flow of two immiscible, viscous fluids between the plates of a Hele-Shaw cell. Due to pressure gradients or gravity, the initially planar interface separating the two fluids undergoes a Saffman-Taylor instability and develops finger-like structures. When one of the fluids is a ferrofluid and a perpendicular magnetic field is applied, the labyrinthine instability ...

متن کامل

Drop in Ferrofluids Subjected to an Azimuthal Field

We perform direct numerical simulations of a non-magnetic drop immersed in immiscible ferrofluids in a confined Hele-Shaw cell under an azimuthal field by a diffuse-interface method. The interface is unstable in such a condition because of the inward attraction of the ferrofluids induced by the magnetic field gradient. We focus on the fingering onset and pattern influenced by the coupling visco...

متن کامل

Control of viscous fingering patterns in a radial Hele-Shaw cell.

We study numerically and experimentally the dynamics and control of viscous fingering patterns in a circular Hele-Shaw cell. The nonlocality and nonlinearity of the system, especially interactions among developing fingers, make the emergent pattern difficult to predict and control. By controlling the injection rate of the less viscous fluid, we can precisely suppress the evolving interfacial in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011